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This case study examines a sixth-grade teacher and her students in an urban
school district in Alaska, engaging in an activity from a module that is part
of the Math in a Cultural Context (MCC) series. By analyzing the module,
the teacher’s practice, classroom discourse, and students’ work, the case
shows that the teacher and the MCC module supported students in
developing substantive reasoning and understanding about the mathematical
relationship between constant perimeter and varying area in rectangles.
Comparison of students’ scores on pre- and post-tests show that the class as
a whole outperformed the control group. Moreover, Alaska Native students,
comprising slightly over one-fourth of the class, outperformed the control
group, had gains in achievement commensurate with the entire class, and
outperformed their Alaska Native peers in the control group by a wide
margin. The case shows that the MCC module and the teacher’s practice
support improved mathematics achievement through interwoven connections
between content, pedagogy, and culture.

Introduction

A society that has tended to view mathematical ability as possessed by only
a few select individuals will need to promote and support forms of instruction
that help all to acquire high levels of quantitative literacy, skill in using
mathematics, and appreciation of its nature and importance (Kilpatrick &
Silver, 2000, p. 226).

igh expectations and achievement in mathematics for all students is a
central goal for schools. However, in Principles and Standards for School
Mathematics, the National Council of Teachers of Mathematics [NCTM]
(2000) emphasizes that higher expectations by themselves will not provide equal
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opportunities or higher achievement for all students. Rather, NCTM argues that
students’ differences, needs, and strengths must be addressed for all students to
have equal opportunities to learn mathematics. This should include the
mathematics program that is provided for students:

All students should have access to an excellent and equitable mathematics
program that provides solid support for their learning and is responsive to
their prior knowledge, intellectual strengths, and personal interests (NCTM,
2000, p. 13).

Curriculum materials, which can contribute to such a mathematics program, are
one important avenue for addressing equity in school mathematics. Tate (1996)
notes that introducing “multicultural elements” (e.g., diverse names, cultural
holidays, national flags) into mathematics textbooks is a common approach used
to connect mathematics to diverse learners in school mathematics curriculum
materials. However, Sleeter (1997) argues that such efforts have not resulted in
higher mathematics achievement for all students and do little to address the
learning needs of minority students.

In contrast to sprinkling multicultural elements throughout traditional
school mathematics textbooks, curriculum materials that seek to implement the
vision of the NCTM (2000) Principles and Standards show promise in providing
school mathematics programs that are equitable and that raise the mathematics
achievement of all students. Features of such “standards-based” mathematics
curricula generally include problem-centered, inquiry-oriented mathematical tasks
through which students engage with important mathematical ideas and concepts.
Students explore mathematics with their teacher who provides guidance by asking
and answering questions, drawing students’ attention to important features of the
mathematics, and helping students develop, express, refine, and generalize their
ideas into appropriate understandings about mathematical concepts and
procedures. Growing evidence suggests that standards-based curriculum materials
support higher achievement for all students in mathematics (Reys, Reys, Lapan,
Holliday, & Wasman, 2003) and standards-based curricula have been shown in
some studies to produce greater gains in achievement for minority students than
nonminority students (Rivette, Grant, Ludema, & Rickard, 2003). Other inquiry
has shown how a standards-based curriculum can support improved mathematics
achievement for minority students but can also be uneven in how and to what
extent it explicitly addresses multicultural education (Legaspi & Rickard, 2005).

Math in a Cultural Context: Lessons Learned from Yup’ik Eskimo Elders
is a series of modules that are intended to supplement a complete K-6
mathematics curriculum and explicitly connect important mathematics with the
culture and knowledge of the Yup’ik people, one of the major groups of Alaska
Natives. The modules in the MCC series are aligned with the NCTM (2000)
Principles and Standards and incorporate substantive, inquiry-oriented activities
that engage students in learning about mathematical content and processes by
exploring rich mathematical problems. The MCC modules provide support to
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teachers to teach the mathematics consistent with constructivist practice, including
guiding students through mathematical explorations rather than demonstrating
rote procedures to students (e.g., how to plug numbers into a formula like “1/2
x base x height” to find the area of a triangle) and then monitoring how they
imitate them (i.e., do they get the right answer). In this way, the MCC modules
parallel standards-based curriculum materials in how mathematics content is
aligned with the NCTM (2000) Principles and Standards and teaching inquiry-
oriented, problem-centered mathematics (e.g., can students explain where the area
formula for triangles comes from and what area means). The MCC modules also
put standards-based content and pedagogy in the context of Yup’ik culture. All
MCC modules use traditional Yup’ik knowledge and practices to motivate and
inform students in the elementary and middle school grades. For example, using
the traditional base 20 Yup’ik counting system to help students learn about place
value and the base 10 system (Lipka, 2003). Therefore, all MCC modules weave
reform mathematics content and pedagogy (i.e., alignment with the NCTM
Principles and Standards) together with Yup’ik culture.

Fish Racks, Perimeter, and Area

One of the MCC modules is Building a Fish Rack: Investigations into Proof,
Properties, Perimeter, and Area (Adams & Lipka, 2003), intended for sixth grade
students. This summary describes how the module brings together the content
and pedagogy of reform mathematics with Yup’ik culture and the knowledge of
elders:

The hands-on activities related to building a fish rack for the harvest of
salmon form the basis upon which formal mathematics develops in this
module. Students engage in activities that simulate the way Yup’ik elders
might go about building a fish rack for drying salmon. In the process, they
consider a number of factors: ease of access, durability, strength, and
capacity to hold a large amount of fish. For example, students in one activity
learn to maximize the area of a rectangular drying rack, given a fixed
perimeter. This exercise applies directly to the real-life situation in which
materials such as wood are often limited, and Yup’ik fishermen thus
optimize the drying rack with the few resources they have. In many exercises
students increase their understanding of both Yup’ik culture and Western
mathematics by learning cultural constructs, such as sufficient and adequate
instead of maximum and best (Adams & Lipka, 2003, p. 3, emphasis in
original).

In addition to addressing mathematics content by investigating perimeter and area,
the authors emphasize that the module incorporates the NCTM process standards
(i.e., communication, reasoning and proof, representation, connections, problem
solving). For example, students learn about proof by engaging in hands-on
activities, often using diagrams or models, to justify their reasoning. Students also
learn about representation in mathematics because they will, ““... represent their
solutions verbally, numerically, graphically, geometrically, and symbolically”
(Adams & Lipka, 2003, p. 3).
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The Building a Fish Rack module begins by giving the teacher and students
an overview of the geography and ecology of southwestern Alaska, particularly
the subsistence lifestyle of the Yup’ik people who live along the coasts and rivers
of the region. These people construct fish racks from available materials to dry
harvested salmon. Building fish racks becomes the overall mathematical context
for the module and yields rich opportunities for learning mathematics. For
example, students learn how to construct the base of the fish rack using traditional
Yup’ik techniques and then develop their understanding of formal (i.e., Western)
mathematics further by verifying that the base is a rectangle and by determining
the length of the diagonals. A central problem in the module is to determine what
the dimensions of a rectangular fish rack should be if, for a fixed amount of
material available to build the fish rack, you want to be able to dry the most fish.
Mathematically, this means determining the dimensions of the rectangle that will
have the largest area for a fixed, or constant, perimeter. Understanding the
dynamic relationship between constant perimeter and varying area in rectangles
is not trivial and is frequently misunderstood by both students and adults. For
example, a common misconception is that perimeter determines area, so that if
two rectangles have the same perimeter they must also have the same area, but
for example a 2x6 rectangle and a 1x7 rectangle have the same perimeters but
different areas. The focus of this case study is the work of a sixth-grade teacher
and her students in an urban Alaska school district as they engage with the
problem of constant perimeter and varying area in designing rectangular fish
racks.

Case Study Methodology and Background

Methodology
Data for this case study of a teacher and her sixth-grade class using the Building

a Fish Rack module were collected from a variety of sources. The author analyzed
transcripts of interviews conducted with the teacher in which she was asked about
her approach to and beliefs about teaching mathematics. An informational
questionnaire completed by the teacher was also studied, along with demographic
information about her students. Detailed classroom observation records of the
teacher’s teaching were used to gain further insight into the teacher’s practice.
Videos of the teacher teaching the Building a Fish Rack module were studied
carefully; the central activity used in this case study was analyzed multiple times,
and portions of the video were transcribed. Mathematical discourse between the
teacher and students was analyzed, and samples of students’ work (e.g., solutions
to problems, entries in math journals) were reviewed. The interview,
questionnaire, and class observation data were collected between spring 2002 and
spring 2004; the teacher used the Building a Fish Rack module and was
videotaped during the spring of 2004.

In addition to the qualitative measures of students’ learning (e.g., discourse,
work samples, math journal entries), students completed pre- and post-tests that
focused on perimeter and area concepts and relationships before and after
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completing the Building a Fish Rack unit. Students in the control group were also
sixth-graders and studied perimeter and area using mainly commercial textbooks
and completed the same pre- and post-tests. Comparing students’ pre- and post-
test scores between the treatment group (i.e., students learning from the Fish Rack
module) and control group (i.e., students who did not use the Fish Rack module,
but used typical textbooks) allowed us to compare students’ understanding of
perimeter and area and provides quantitative information about the overall impact
of the Building a Fish Rack module. The pre- and post-tests were completed by
both the treatment and control group students during the spring of 2004. All of
these sources of qualitative and quantitative data were used in developing the final
case study.

The activity from the Building a Fish Rack module that is the focus of this
case study is Activity 12: Investigating the Relationship of Perimeter and Area
of Rectangles. This activity was chosen because it is a watershed investigation
in the module. Activity 12 explores the mathematics of how the area of rectangles
can vary when perimeter is held constant and provides key results for students
to apply in designing their own fish rack. Another reason to focus on Activity
12 in this case study is that, after we reviewed videos of the teacher teaching other
activities from Building a Fish Rack, we determined that Activity 12 provides
a representative example of how the teacher taught the entire module (and other
modules in the MCC series). Finally, comparison across the interviews with the
teacher, information from the questionnaire, and detailed observations of her
teaching using Building a Fish Rack and other MCC modules shows that Activity
12 exhibits the characteristics of the teacher’s practice that consistently emerge
from all the data sources.

Background
Janet Speed (her real name, used with her permission) teaches sixth grade in the

Fairbanks North Star Borough School District, an urban school district in interior
Alaska. The district enrolls about 14,000 students in grades K-12 and
encompasses a large geographic area with a total population of about 86,000.
Ms. Speed has been teaching for 19 years, including 15 years teaching at her
current K-6 school. Ms. Speed is Caucasian and does not speak Yup’ik. Her class
is diverse and includes 22 students: six Alaska Native, four African American, and
12 Caucasian. One of the Alaska Native students is Yup’ik, with the other five
students from other Alaska Native groups. In this case study, we specifically note
when students referred to in the case are Alaska Native; where not specifically
noted, students should be assumed to be non-Alaska Native. Ms. Speed has earned
her master’s degree and is very comfortable with mathematics and with teaching
mathematics. Ms. Speed’s formal study of mathematics includes meeting general
education requirements for her undergraduate degree and completing mathematics
for elementary teachers courses for teaching certification.

Ms. Speed finds mathematics interesting, and although she says that she
seldom tries to incorporate students’ experiences in her teaching, she does value
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their ideas when they occur in the classroom and encourages students to share
them. While Ms. Speed says she does not typically connect mathematics to other
disciplines, she does try to illustrate mathematical concepts with practical
examples (e.g., food, money). Teaching mathematics daily for about 75 minutes,
Ms. Speed says that she frequently has her students work with each other and
routinely has them write explanations of their work and justify their reasoning.
She occasionally engages her students with problems that take more than one day
to complete but almost always uses worksheets and seatwork in her mathematics
teaching and frequently makes use of the textbook. Ms. Speed says that she
almost always uses tasks or problems to introduce new math topics to her students
and also makes use of counterexamples. She sometimes works with her students
to understand mathematical formulas and why they work. Ms. Speed says that
she is “always looking for new and better ways to teach math.” As a participant
in this study examining the use and effectiveness of the MCC materials (including
the Building a Fish Rack module), Ms. Speed completed professional
development workshops on use of the MCC materials before she began to teach
with them.

Janet Speed originally worked with the MCC project as a control group
teacher: i.e., she and her students participated in MCC but used their traditional
math textbook and supporting materials, rather than MCC modules. As part of
the control group, Ms. Speed’s students attained high achievement scores on
MCC module post-tests relative to other control-group classes. Ms. Speed was
subsequently invited to participate in MCC as a treatment group teacher (i.e.,
using MCC modules in her classroom) partly because her students’ performance
in the control group stood out to MCC researchers. Another factor leading to
Ms. Speed joining the treatment group is that her classes have been typically more
diverse, with a higher population of Alaska Native students, than most other
teachers in the urban control group. A final reason for Ms. Speed’s participation
in the treatment group is that she teaches in an urban school district. Most research
on mathematics achievement of Alaska Native and other American Indian
students occurs in rural settings. However, in Alaska the Alaska Native population
is becoming increasingly urbanized. While demographic data on rural and urban
residency of Alaska Natives is sketchy (there are no uniform classifications of
“rural” or “urban” for many Alaska communities), recent census data shows that
about 20% of the Alaska Native population lives in Anchorage (the largest city
in Alaska, with a population of over 277,000) with clear demographic trends of
Alaska Natives relocating from small, rural villages to larger Alaska communities
(Goldsmith, Howe, & Leask, 2005). The significant and increasing urbanization
of Alaska’s Native population provides additional motivation to study the
implementation of MCC modules in urban classrooms like Janet Speed’s, to learn
how to best meet the needs of Alaska’s increasingly urban K-12 Alaska Native
student population.
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Constant Perimeter, Varying Area: Learning Mathematics
to Design a Fish Rack

Janet Speed’s students sit at their desks, which are pushed together into clusters.
At her direction, students clear their desks, except for their math journals, and
then focus their attention on her as she stands at the front of the room next to the
overhead projector. Ms. Speed then asks her students to put their pencils down
and listen carefully to her conjecture:

Alright—here’s my conjecture—is that [reads from text on the overhead
transparency], “The perimeters of different rectangles are the same, so they
will hold the same number of fish—meaning that they will have the same
area.” So, my conjecture is that if the perimeter [of rectangles] is the same
then the area is also the same. (Pause.) So, what I want you to do is just take
a minute and talk with somebody just across from you or right at your table
and see if you agree with me. If you agree with me you need to be able to
prove it and say why you agree. Or, disprove it—and if you’re going to
disprove it you need to give me a counterexample, an example that shows
that that’s not true. OK—does everyone understand what I’m saying here?

With nods from her students that they understand the task, Ms. Speed then
reminds her students of an earlier activity in the Building a Fish Rack module
where they found all the possible rectangles (with edges that have whole number
lengths) that have a perimeter of 28. Ms. Speed then puts another transparency
on the overhead, which is a reproduced blackline master from Activity 10:
Exploring Perimeter of Rectangles, in the Building a Fish Rack module (Adams
& Lipka, 2003, p. 132):

Length (cm) Width (cm) Perimeter (cm)
1 13 28
2 12 28
3 11 28
4 10 28
5 9 28
6 8 28
7 7 28

Using the table of their earlier findings to further illustrate her conjecture, Ms.
Speed says, “My conjecture is that since they [rectangles in the table] all have
a perimeter of 28, they’ll all have the same area too. OK?” Satisfied that her
students understand the task, Ms. Speed directs her students to begin talking at
their tables to decide whether they agree or disagree with the conjecture and how
to prove or disprove it.

This introduction to Activity 12 provides a clear example of beginning an
inquiry-oriented lesson. Ms. Speed presented a conjecture that is relevant to the
context of the module (i.e., building a fish rack) and made sure that her students
understood the conjecture. Further, she provided clear guidance on criteria for
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an appropriate answer (i.e., providing proof or a counterexample) and connected
the conjecture back to earlier mathematics the students had learned to help them
begin to formulate their responses. All of these features of Ms. Speed’s practice
reflect mathematics teaching reforms described in the NCTM Principles and
Standards. It is also notable that Ms. Speed closely follows the directions
provided in the Building a Fish Rack module to begin Activity 12 (Adams &
Lipka, 2003, p. 142).

As her students begin discussing the conjecture with peers, Ms. Speed
circulates around the room, making sure to visit each cluster of students’ desks.
At one group of four students, the two boys disagree with the conjecture and the
two girls agree (one of the girls is Alaska Native). Ms. Speed reminds these
students that they not only need to decide whether they agree or disagree but also
explain how to prove or disprove the conjecture. “Your group needs to be able
to explain what you did,” she says. As Ms. Speed moves away, one of the boys
flips through his math journal and pulls out sketches on grid paper of all the
rectangles with perimeter of 28 in the table Ms. Speed put on the overhead (i.e.,
1x13 rectangle, 2x12 rectangle, etc.). All four students begin looking at the
sketched rectangles and the other boy says, “So area has to be the same on all of
them?” as the other students nod. One of the boys says, “The area is all the
squares, right?”” and the other boy replies, “Yeah.” At this point, the students begin
counting squares in the sketches of rectangles with a perimeter of 28. After a
moment, one of the boys says, “You were right—they re not the same.” The other
boy, obviously pleased, shows everyone in the group how one rectangle has an
area of 24 (i.e., the 2x12) and another has an area of 13 (the 1x13 rectangle). One
of the girls (an Alaska Native) counts up the area of two rectangles once more
and verifies that they are different. Both of the girls now agree with the boys that
the conjecture is not true. A few moments later, Ms. Speed, who has been
circulating around the room, returns to the group and asks how they are doing.
One of the girls (non-Alaska Native) replies, “We agreed [gesturing to herself
and the other girl in the group], they disagreed [gesturing to the two boys], and
then they showed us how that it was wrong, so now we disagree.” One of the boys
then shows Ms. Speed that they all disagree with the conjecture because some
of the rectangles with perimeter 28 have different areas.

This example of students working in small groups is typical of Ms. Speed’s
classroom. Students engaged in thoughtful reasoning about the validity of the
conjecture and disproved it using a counterexample (e.g., the areas of the 1x13
and 2x12 rectangles are not the same, even though they both have a perimeter
of 28). The group’s thinking about the conjecture was initially split, but by
comparing it to the results of their prior work, all the students in the group came
to a valid and mathematically supported conclusion. An additional point about
this example is that the Alaska Native student in the group did not participate in
the verbal discussion as much as the other students. However, she did sketch some
rectangles during the work her group did together, comparing the areas of the
different rectangles with a perimeter of 28, and she verified the counterexample
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by finding areas not the same. Also, when the group was trying to decide how
to find the area of the different rectangles, she reminded them with the sketches
how to count up the grid squares in the rectangles to determine the area.
Therefore, like her peers, the Alaska Native student did participate in the group
work, but in a more nonverbal way.

After checking with each group, Ms. Speed brought the class back together
for a discussion to summarize the groups’ findings. The class was unanimous in
disagreeing with her conjecture. Other groups volunteered valid counterexamples
to disprove the conjecture (e.g., the 10x4 and 7x7 rectangles have perimeter of
28 but different areas). As Ms. Speed recorded her students’ counterexamples
at the overhead projector, one student described his group’s counterexample as
showing that “the inside is different, but the outside would be the same.” This
student is distinguishing that while the areas are different (the “inside”), the
perimeters of the rectangles are the same (the “outside’). Mathematically, this
shows that for rectangles with constant perimeter, the area can vary. Next,
Ms. Speed asked her students to find the area of each of the seven rectangles in
the table shown earlier. Most students had already found the area of most or all
of the rectangles, but Ms. Speed asked them to be sure that they had sketches of
each. Students worked individually for several minutes, sketching the rectangles
and then finding and recording the area of each by either counting the grid squares
within the rectangles or by multiplying the length by the width (applying the
formula that the area of a rectangle is the product of its length and width).
Continuing to follow the module very closely, Ms. Speed then brought the class
back together and used an overhead transparency from the Building a Fish Rack
module to summarize the areas at the overhead projector (see Adams & Lipka,
2003, p. 146). The transparency shows sketches of the rectangles as fish racks,
and Ms. Speed mentioned at the beginning of the summary that the rectangles
were pictured, “as if they were fish racks.” With her students’ input, Ms. Speed
filled in the area of each.

Next, Ms. Speed asked her students to complete a table, provided in the
module, listing the width, length, and area of all the rectangles, with whole-
number side measures, that have a perimeter of 28 (see Adams & Lipka, 2003,
p- 150). Before handing out a copy of the table to each student, Ms. Speed puts
a transparency of the table on the overhead and notes that the perimeter column
is given and directs her students to “fill in the width, and the length, and then the
area.” She then adds, “T want you to start with one by thirteen and then go to two
by twelve, and go to three by eleven (pause)—see what I'm doing here? And keep
going.” The purpose of this part of Activity 12 is to help students identify patterns
among rectangles that have constant perimeter and varying area. Ms. Speed’s
direction to list the rectangles in order (i.e., 1x13, 2x12, 3x11, ...) is a pedagogical
strategy so that patterns will be more apparent to students when they study the
completed table. Ms. Speed’s students completed their individual tables in about
four minutes. Ms. Speed then brought the class back together and put a completed
table on the overhead (Adams & Lipka, 2003, p. 147):
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Perimeter Width Length Area
(cm) (cm) (cm) (cm’)
28 1 13 13
28 2 12 24
28 3 11 33
28 4 10 40
28 5 9 45
28 6 8 48
28 7 7 49
28 8 6 48
28 9 5 45
28 10 4 40
28 11 3 33
28 12 2 24
28 13 1 13

Bringing the class back together, Ms. Speed says, “OK. Here’s my chart
that, hopefully, matches your chart [she pauses and gets nods from the class].
I want you just to look at your charts for a minute and then tell me what patterns
you notice.” A number of students quickly raise their hands. The first student
Ms. Speed calls on (an Alaska Native girl) says, “Length times width equals
area.” The next student Ms. Speed calls on (an Alaska Native boy) says that he
notices how the “length and width are the same [pause] they go backwards,” and
then adds that “the width goes from one to thirteen and the length goes from
thirteen to one.” Another student (a non-Alaska Native boy) observes that, “The
area goes odd, even, odd, even” and a final student (a non-Alaska Native girl)
points out that “after the area gets to 49, which is, like, in the middle, then it starts
going back down again.” Ms. Speed extends this observation, noting that, in the
table, as the width gets larger the area initially gets larger also, but then peaks
at 49—as the student noted—and then starts decreasing. An Alaska Native student
in the class adds to this observation that it shows how the rectangles in the table
“start over again.” All the students’ comments demonstrate how they are
identifying patterns in the table, reasoning about what the patterns mean, and
connecting them back to the rectangles that the data represent.

Drawing attention back to the completed table on the overhead, Ms. Speed
asks her students to use the table to think about this question and asks, “So, if I
were going to build my fish rack, and I can only make it—I only have enough
materials to make it with a perimeter of 28, but I need it as big as possible, what
shape do you suggest?”” One student (a non-Alaska Native boy) quickly raises
his hand and volunteers, “Seven by seven.” When Ms. Speed asks him why seven
by seven, he replies, “It’s a square!” When Ms. Speed pushes the student to
explain his reasoning further about what’s special about the square, the same
student responds, “Uh (pause) seven by seven has 49.” Praising the student,
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Ms. Speed then calls on another student who notes that, “It [the 7x7 square] has
the biggest area.” In this segment of her instruction, Ms. Speed is closely
following the Building a Fish Rack module and has, through questioning her
students and pushing them to explain their reasoning, helped them formalize that
for rectangles that have constant perimeter and varying area, the square is the
rectangle that will have the greatest area. Ms. Speed has also connected this
mathematical finding to the central problem of the unit, which is how to design
a fish rack, in this case how to make it as large as possible given a fixed amount
of construction material.

As a follow-up question, Ms. Speed asks her students what rectangular fish
rack would hold the most fish if only enough material were available for a
perimeter of 25. Several students volunteer that a 5x5 fish rack would be the
biggest because, as one student says, “Doubles are bigger,” referring back to the
finding that the rectangle with the largest area is a square (which has the same
width and length, i.e., “doubles”). However, when Ms. Speed attempts to sketch
a square with perimeter 25, she realizes that such a square can’t have sides with
whole-number lengths. Ms. Speed acknowledges to the class that she’s made an
error and that she was thinking about the rectangle having an area of 25, not a
perimeter of 25. To clarify this, Ms. Speed sketches a 5x5 square at the overhead
and says, “That’s a perimeter of 20 [pause] a five by five—is a perimeter of 20.
Do you agree? It has an area of 25.” All students in the class nod in agreement.
Ms. Speed then asks the class to generate all the possible rectangles with a
perimeter of 25 that have whole number side lengths. Most students seem initially
puzzled, but after a moment, several students note from their math journals an
earlier finding (from Activity 10 of the Building a Fish Rack module) that such
a rectangle does not exist because, as one student says, “You have to split the
perimeter in half to get the length and width, and 25 doesn’t have even halves.”
This student’s comment gets at a mathematical property of rectangles. In
particular, since the sum of the length and width of a rectangle has to be half of
the perimeter, if half the perimeter is not a whole number (i.e., “doesn’t have even
halves”), then either the length or the width (or both) cannot be a whole number
(e.g., if the sum of two numbers is 12.5, you cannot get this sum by adding two
whole numbers). This part of Ms. Speed’s lesson shows how she used an error
as an impromptu exploration to think more about constant perimeter and varying
area in rectangles with students connecting the problem to prior findings to
address it. Ms. Speed is also modeling how to share, test, and revise her own
mathematical thinking, demonstrating what she expects her students to do.
Modeling problem solving and cognition is a well-documented approach to
helping students develop problem-solving skills, including the metacognitive
processes that support problem solving (Schoenfeld, 1985).

For additional practice, Ms. Speed asked her students to help her find all
the rectangles with a perimeter of 20 (with whole number side lengths). She
records her students’ responses at the overhead and quickly generates a complete
and correct list (e.g., 1x9, 2x8, 3x7, ...) as possible rectangles. Ms. Speed notes
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the same finding as with their work with the rectangles with a perimeter of 28,
namely that the 5x5 rectangle, or square, has the largest area for rectangles with
a perimeter of 20. To check her students’ understanding further, Ms. Speed asks
the class, “Suppose I am going to [pause] I’ve got a really good fishing season
and I’'m going to make a huge fish rack and it’s going to have a perimeter of 100.
What should the dimensions be so it can be as big as possible?” About one-third
of the class immediately raises their hands and the first student called on
volunteers, “25 by 25! Other students in the class nod in agreement. The class
also agrees with another student (Alaska Native) who says that the area will be
625. Ms. Speed then asks her students if this answer is consistent, asking, “Does
that fit [pause] our pattern? Is 25 by 25 a square?”” All students nod in agreement.
This segment of Ms. Speed’s teaching shows how she has verified that her
students understand that for rectangles with a fixed perimeter, a square will have
the largest area. She also, once again, connected this mathematical relationship
to the task of designing a fish rack.

For the next 10 minutes of class, Ms. Speed had her students individually
complete a graph from the Building a Fish Rack module (Adams & Lipka, 2003,
p- 151) as she circulated around the room monitoring their progress. The students
are asked to make a graph plotting the length and area of the rectangles with a
perimeter of 28 from the table completed earlier. The completed graph shows how
the area first increases as the length increases but then the area decreases as the
length continues to increase. Here is the completed graph (Adams & Lipka, 2003,
p- 149):
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All of Ms. Speed’s students were successful in sketching the graph. As Ms. Speed
circulated around the room, asking students about their graphs and what the graph
means, students made comments that included, “It looks like a hill”’ and “In the
middle of it there’s a square.” These comments illustrate how students made the
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connection between the graph and the data in their tables that as the length of
rectangles with fixed perimeter increases, the area first increases, peaks when the
rectangle becomes a 7x7 square, and then decreases. The graph and the numerical
data in the table are different mathematical representations of this property of
rectangles with constant perimeter and varying area.

To summarize the lesson, Ms. Speed takes a loop of string at the overhead
and makes rectangles, starting with long, flat rectangles and gradually making
it look more like a square. She asks the class to tell her when the area is the
biggest. The class correctly stops her when the rectangle is a square. The class
also correctly observes that, as Ms. Speed continues to change the rectangle into
tall, skinny rectangles, the perimeter is unchanged but the area is now decreasing.
This is a dynamic representation that shows the same mathematical relationship
as the table and graph. For the remaining nine minutes of this 75-minute lesson
to complete Activity 12 in the Building a Fish Rack module, Ms. Speed directs
the class, “I want you to write in your Fish Racks journal what you learned today
[pause] ... about the relationship of length and width of a rectangle to area.”
Ms. Speed monitors her students as they write in their journals. Here are examples
of what students wrote: “I learned how to find the biggest possible area if the
perimeter is like, 100, 20, or 25 by using doubles.” Another student wrote, “What
I learned today was when the length goes between 1-7 the area gets bigger then
when it goes from 7-13 the area gets smaller because the numbers are repeating.”
And an Alaska Native student wrote “a square has the largest area.” These
examples of students’ journal entries suggest that Ms. Speed’s students can
explain the mathematics of constant perimeter and varying area with rectangles
in their own words, although no explicit connections are made to designing a fish
rack.

Student Achievement

We measured the achievement and changes in achievement of Janet Speed’s
students on perimeter, area, and proof by comparing her students’ results on pre-
and post-tests designed to assess these concepts. We compared student
achievement between Ms. Speed’s Alaska Native students and her non-Alaska
Native students. Ms. Speed’s students’ achievement was also compared with a
group of control students who also studied perimeter, area, and proof in urban
school settings in Alaska, but used commercially available textbooks as the
primary curriculum resource rather than the Building a Fish Rack module. This
comparison was made as part of a larger study of the MCC modules and their
effects on student achievement. We investigated changes in achievement between
the Alaska Native students in Ms. Speed’s and other urban treatment classes (i.e.,
the other teachers in urban districts who also taught Building a Fish Rack and
other MCC modules) and the Alaska Native students in the urban control group.
All of the scores are averages and are expressed as raw scores in terms of
percentage correct. Teachers in the treatment group received professional
development in using the MCC materials before teaching with them. Teachers
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who did not use MCC materials (control group classrooms) also received
comparable professional development in using the curriculum materials adopted
by their school district before beginning participation in the MCC study. In
general, students in the MCC study treatment and control groups showed similar
levels of achievement on the pre-test on perimeter, area, and proof concepts but
significantly different levels of achievement on the post-test.

The table below shows changes in achievement between Ms. Speed’s entire
class (including her Alaska Native students) and the subgroup of her Alaska
Native students; recall that there are 22 students in Ms. Speed’s class, six of whom
are Alaska Native (the data in this table and all following tables are from spring
2004 when Ms Speed taught the Building a Fish Rack module):

Ms. Speed’s
whole class
(% correct);

Ms. Speed’s
Alaska Native
students only (%

N=22 correct); N=6
Pre-Test | 42.91% 38.29%
Post-Test | 72.41% 68.0 %

This data shows that Ms. Speed’s entire class made substantial gains in
achievement in perimeter, area, and proof after completing the Building a Fish
Rack module. Moreover, the achievement gains of Ms. Speed’s Alaska Native
students are commensurate with the class as a whole.

The table below shows how changes in achievement of Ms. Speed’s entire
class and her Alaska Native students compare to the changes in achievement of
all the students in the urban control group (urban students who did not use the
Building a Fish Rack module):

Ms. Speed’s Ms. Speed’s | Urban
whole class Alaska control
(% correct); Native students
N=22 students (% correct);
only N=30
(% correct);
N=6
Pre-Test | 42.91% 38.29% 37.83%
Post-Test | 72.41% 68.0% 40.20%

The table shows that Ms. Speed’s entire class and her Alaska Native students
outperformed the urban control group students by a wide margin. Taken together,
these results suggest that the Building a Fish Rack module made a significant
difference in achievement for Ms. Speed’s Alaska Native and non-Alaska Native
students. Moreover, the gains in achievement of Ms. Speed’s students go beyond
statistical significance to be of practical significance. In particular, the gains are
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substantial enough to have positive implications for students’ verbal and written
work and for students’ grades in school and scores on standardized mathematics
tests.

The next table compares the performance of all Alaska Native students in
urban classrooms who completed the Building a Fish Rack module (including
Ms. Speed’s students), with the Alaska Native students in the urban control
classrooms. The sample size for both treatment and control groups is small but
potentially informative:

Alaska Native | Alaska Native

students who students who

studied did not study

Fish Rack Fish Rack

(% correct); (% correct);

N=14 N=3
Pre-Test | 40.86% 51.5%
Post-Test | 61.21% 48.5%

Due to the small sample sizes, particularly with the control group (N = 3), it is
not possible to make generalizations from the results in the above table. However,
the changes in achievement between the groups do suggest that the Building a
Fish Rack module, in addition to making a difference in the achievement of all
urban students, may play a particularly strong role in improving the achievement
of urban Alaska Native students. Given the increasing urbanization of the Alaska
Native population (Goldsmith, Howe, & Leask, 2005), this finding is promising
and warrants more extensive investigation in future research.

This case study and all of the above data about student achievement focus
on students in urban settings. However, the table below shows the pre- and post-
test data on perimeter, area, and proof concepts for all of the students, both urban
and rural, in the study who were taught with the Building a Fish Rack module
(treatment group) and those taught the concepts primarily with conventional,
commercially available textbooks (control group):

All students in
treatment group
(% correct);

All students in
control group
(% correct);

N =99 N =47
Pre-Test | 38.60% 41.26%
Post-Test | 53.33% 42.04%

Because students and teachers in rural schools in Alaska have much different
circumstances than their peers in urban schools (e.g., multiage classrooms,
students who are predominantly Alaska Native), it can be argued that aggregating
the rural and urban student groups is problematic. However, the data do suggest,
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and the larger sample sizes reinforce, that across a variety of school settings in
Alaska, the Building a Fish Rack module makes a significant and positive impact
on the mathematics achievement of all students. Because students in Alaska’s
rural schools are predominantly from Alaska Native groups, including Yup’ik
Eskimo, the above data underscore that the Building a Fish Rack module supports
increased mathematics achievement in Alaska Native students that significantly
exceeds that of typical textbooks.

Analysis: Content, Pedagogy, and Culture

This case study suggests that students in Ms. Speed’s class developed substantive
understandings about perimeter, area, and proof. Evidence for this claim is both
qualitative and quantitative. The case study shows Ms. Speed’s students engaging
in thoughtful mathematical discourse and expressing, testing, and revising their
ideas about mathematics, particularly about the relationship between constant
perimeter and varying area in rectangles. The achievement data shows that Ms.
Speed’s students outperformed their peers who did not learn from the Building
a Fish Rack module, based on the results of comparable pre-test scores but
significantly higher post-test scores. Taken together, these findings demonstrate
how the Building a Fish Rack module provided support to Ms. Speed and her
students in addressing key mathematics content (e.g., measurement concepts like
perimeter and area) and processes (e.g., reasoning and proof, communication,
representation) identified in the NCTM Principles and Standards for School
Mathematics (NCTM, 2000).

The case shows how the problem-centered, inquiry-oriented structure of
the Building a Fish Rack module is central to engaging students with the
mathematics content. Students are not asked to quickly find answers to
computational exercises by plugging numbers into thinly understood formulas,
but, for example, to decide whether a conjecture is true or false and provide
evidence for their claim. Such problem-centeredness of the Building a Fish Rack
module supports inquiry because the problems are substantive and require
investigation, discussion, and possibly revision by the students. Therefore, the
content of what students are learning in Activity 12 in the Building a Fish Rack
module in Ms. Speed’s class is not only about relationships between perimeter
and area of rectangles but also about how to actually do mathematics. Learning
about how to do mathematics by testing conjectures (e.g., rectangles that have
the same perimeter also have the same area) and investigating relationships
between mathematical concepts (e.g., constant perimeter and varying area in
rectangles), as demonstrated in this case, supports students in learning,
understanding, and applying mathematics content (NCTM, 2000; Reys et al.,
2003). The fact that Ms. Speed’s and other students who used the Building a Fish
Rack module significantly outperformed the control group students who did not
learn from problem-centered, inquiry-oriented materials strengthens this claim.
Studies of student achievement using problem-centered curricula other than MCC
show similar results (Rivette et al., 2003).
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While the Building a Fish Rack module plays an important role in
understanding students’ achievement in this case, how Ms. Speed taught Activity
12 (and all of the module) is also central. In particular, what a teacher does with
a mathematics curriculum in her classroom shapes not only what students learn,
but what they have opportunities to learn (Remillard & Bryans, 2004; Rickard,
2005). This case study shows how Ms. Speed followed the Building a Fish Rack
module closely, but also consistently used a pedagogical approach of open
mathematical discourse. Ms. Speed used the Building a Fish Rack module to
provide mathematically rich problems for her students to investigate and then
guided them by pushing them to share their ideas, explain their reasoning, and
providing opportunities for revision. Supporting this climate of open mathematical
discourse is another feature of Ms. Speed’s practice: she consistently called only
upon volunteers (students who had raised their hand) as opposed to nominating
students (calling on students whether or not they are comfortable or prepared to
share their ideas). Calling on volunteers seemed an effective strategy for
Ms. Speed in encouraging participation from her students, particularly her Alaska
Native students. Ms. Speed also modeled problem solving for her students,
including sharing a solution, testing it, realizing it does not fit the conditions of
the problem, and then revising the solution so that it is valid (i.e., trying to find
the largest rectangle with a perimeter of 25 instead of 20). Ms. Speed was also
consistent in her persistence in completing investigations of complex
mathematics. For example, she made sure that all of her students completed the
various tables and graphs in Activity 12 of the Building a Fish Rack module and,
even when she asked students to find the largest rectangle with a perimeter of 25
(instead of 20), she followed through with the problem, uncovering and correcting
an error in the process. In this way, Ms. Speed maintained high expectations of
her students to engage in mathematical discourse and tasks in the Building a Fish
Rack module and modeled these expectations herself.

The mathematics content in the Building a Fish Rack module is developed
within a cultural context. Properties of shapes, perimeter, area, and proof are
investigated in the context of designing a fish rack based on traditional Yup’ik
practices and knowledge. Because she followed Activity 12 in the Building a Fish
Rack module closely, Ms. Speed made multiple connections to designing a fish
rack in her teaching. For example, the case shows that the conjecture Ms. Speed
posed to her students at the beginning of the lesson is connected to designing a
fish rack, as are other follow-up questions she asked students (e.g., what are the
dimensions of the largest rectangular fish rack made with a certain amount of
material). Of the 18 activities in the Building a Fish Rack module, several address
Yup’ik culture and fish racks more extensively than Activity 12. For example,
the first four activities focus on the cultural and ecological background of fishing
in southwestern Alaska so that students understand how designing and building
fish racks fits within Yup’ik culture; the culminating activity of the module is for
students to build a model of a fish rack (Adams & Lipka, 2003). Therefore, by
closely following the module in her teaching, Ms. Speed addresses Yup’ik culture

96 Journal of American Indian Education - Volume 44, Issue 3, 2005



specifically, and Alaska Native culture generally, more extensively over the entire
module than is suggested by Activity 12 alone. Ms. Speed’s close following of
the module, as demonstrated in this case study, implies that the mathematics
content of the module is connected explicitly to Yup’ik culture because the
module makes these connections.

By carefully following the module as part of her pedagogy, Ms. Speed
made both mathematical connections and cultural connections explicitly intended
by the curriculum developers. What is different about how Ms. Speed addressed
content and culture in her pedagogy is that she went beyond the module in
teaching the mathematics, but stopped at the module in making connections to
and learning about Yup’ik culture. Ms. Speed went beyond the module in
teaching mathematics content by consistently and persistently fostering rich
mathematical discourse in her classroom. However, in Activity 12 she connected
her students’ study of rectangles to fish racks in several instances, but, for
example, did not ask her students, particularly her six Alaska Native students,
about their own experiences with designing or building fish racks. Making such
connections could potentially benefit all students, but particularly Alaska Native
students, because a major goal of multicultural education is to help make
academic content more meaningful and relevant by connecting it to students’ lives
and experiences (Tate, 1996). In Activity 12, for example, this could take the form
of asking Alaska Native students, some of whom may have been to a traditional
fish camp where fish racks are constructed and used, to describe how the size of
a fish rack is determined given the material available. The class could then
compare such practice at fish camp with the mathematical relationship of constant
perimeter and varying area in rectangles. Even if few or none of the Alaska Native
students in a particular class have had direct experience with building a fish
rack—and this may be the case in an urban classroom like Janet Speed’s—these
students may have family members who have or have heard stories about fish
camp. In these cases, connections to traditional Yup’ik knowledge and practices
in Building a Fish Rack and other MCC modules could still be meaningful to the
lives and cultural backgrounds of Alaska Native students and all students who
live in Alaska. Research on the relationship between rich cultural connections
in problem-centered, inquiry-oriented mathematics curricula and students’
mathematics achievement suggests that even curriculum that provide very limited
cultural connections support gains in achievement for minority students that
match or outpace all students as a group (Legaspi & Rickard, 2005; Rivette et
al., 2003). However, research also suggests that connecting mathematics to
students’ own lives, cultures, and circumstances is critical in achieving equity
in school mathematics for all students (Sleeter, 1997).

Conclusions and Implications

Janet Speed effectively taught the MCC Building a Fish Rack module to her class
of 22 sixth graders, including six Alaska Native students. Her effectiveness is
demonstrated in the case study by how she maintained a stimulating classroom
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environment for investigating rich mathematical situations in the module and how
she supported students’ investigations with consistent mathematical discourse
to share, test, and revise their ideas about perimeter, area, and proof. Ms. Speed
also made connections to fish racks in Activity 12, addressing Yup’ik culture and
the Alaskan context in her pedagogy as well as content. Going beyond the
mathematics content of the curriculum in her teaching, but stopping at the
curriculum in addressing culture, is consistent with her beliefs about her own
teaching. In particular, Ms. Speed describes herself as comfortable with
mathematics and always asking students to explain their thinking, but
acknowledges that she seldom connects mathematics to other disciplines or her
students’ own experiences. In addition to the qualitative evidence from the case
study about her effectiveness in teaching the Building a Fish Rack module,
Ms. Speed’s students, both her Alaska Native students and her class as a whole,
outperformed the control group on post-tests of achievement in perimeter, area,
and proof, providing quantitative evidence of her effectiveness teaching the
module. All of this evidence also suggests that the MCC Building a Fish Rack
module is effective in helping students, particularly Alaska Native students, to
attain higher mathematics achievement in perimeter, area, and proof concepts than
students using traditional textbooks to learn the same concepts. The role of MCC
modules in enhancing students’ mathematics achievement has been replicated
in other qualitative and quantitative studies of other MCC modules that address
other mathematics concepts (Adams & Lipka, 2003; Lipka, 2003).

One implication of this case study is that problem-centered, inquiry-
oriented mathematics curricula that embed mathematics in a non-Western cultural
context, in this case Yup’ik culture and the Alaska context, can support the
mathematics achievement of all students. Perhaps more than any other subject,
mathematics has been taught in K-12 schools from a Western perspective that
tends to gloss over or completely ignore the contributions of non-Western cultures
and may perpetuate a belief that only some people can learn mathematics
(Kilpatrick & Silver, 2000; NCTM, 2000; Sleeter, 1997). This case study shows
that Alaska Native students and non- Native students can demonstrate strong
mathematics achievement that exceed that of their peers when they use problem-
centered, inquiry-oriented curricula that are culturally based.

This case study also raises the issue of what roles content and culture play
in students’ learning of mathematics. For example, to what extent was students’
learning shaped by the problem-centered, inquiry-oriented structure of the
Building a Fish Rack module, in tandem with Ms. Speed’s pedagogy that fostered
and maintained rich mathematical discourse? Similarly, to what extent was
students’ achievement shaped by the Yup’ik and Alaska cultural context in which
the mathematics in the Building a Fish Rack module is embedded and to which
Ms. Speed made connections? Perhaps the structure of the Building a Fish Rack
module, combined with Ms. Speed’s pedagogy supporting discourse,
accommodated more learning styles and enhanced her students’ mathematics
achievement relative to the control group students. Perhaps the Yup’ik cultural
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context of the Building a Fish Rack module allowed more students, both Alaska
Native students and non- Native students who know about or may take part in
harvesting salmon, to connect mathematics to their own lives and circumstances,
thereby supporting their learning. Both of these perspectives are supported by data
on Ms. Speed’s students’ achievement—all of her students, including the
subgroup of her Alaska Native students, outperformed the control group students
on the post-tests on perimeter, area, and proof concepts. Both perspectives are
also supported by other research (Rivette et al., 2003; Sleeter, 1997; Tate, 1996).
This case study, therefore, builds on prior research that implies that learning more
about the roles of content, pedagogy, and culture in using problem-centered,
inquiry-oriented mathematics curricula may lead to more specific recom-
mendations for teacher development, pedagogy, and curriculum (Lipka & Adams,
2004). For example, if Ms. Speed had asked her students to share experiences
they may have had at fish camp as part of the mathematical discourse in her
classroom while teaching Building a Fish Rack, would that have further enhanced
the mathematics achievement of all her students, especially her Alaska Native
students? Research that could answer this kind of question could inform both the
development of mathematics curriculum and its implementation by teachers.
Finally, this case study demonstrates how content, pedagogy, and culture
are entwined in Ms. Speed’s classroom while studying the Building a Fish Rack
module. The Yup’ik cultural context of the module provides a coherent purpose,
meaning, and motivation to learning the mathematics content through
investigations. Both content and culture are supported by Ms. Speed’s pedagogy,
through which she pushes students to formulate, express, test, and revise their
ideas about the mathematics and connect it to fish racks and other aspects of
Yup’ik culture. The entwined nature of content, pedagogy, and culture implies
that all three need to be addressed, not only in mathematics curriculum like
Building a Fish Rack and other MCC modules, but also in teachers’ professional
development so that more teachers can orchestrate such curricula like Ms. Speed
and, hopefully, achieve similar results in their students’ mathematics achievement.

Anthony Rickard is Associate Professor of Mathematics Education at the
University of Alaska Fairbanks. His current work centers on mathematics
curriculum development, teachers’ implementation of problem-centered
mathematics curricula, the role of standards-based mathematics curricula in
teacher preparation and teacher learning, and multicultural education.
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